Abstract
Tendon injuries are major musculoskeletal disorders. Polydeoxyribonucleotide activates the adenosine receptor subtype A2A, resulting in tissue growth and neogenesis. This experimental study confirms that polydeoxyribonucleotide can improve secretion of various growth factors, promote collagen synthesis, and restore tensile strength of the Achilles tendon in a rat model with Achilles tendon injury. Thirty-six male Sprague-Dawley rats, aged 7 weeks, were divided into two groups, and the Achilles tendon was transected and repaired using the modified Kessler's method. In the experimental group (n = 18), the rats received daily intraperitoneal administration of polydeoxyribonucleotide (8 mg/kg/day for 1, 2, or 4 weeks). The control groups received the same amount of normal saline. The rats were euthanized at 1, 2, and 4 weeks, and tissues from the repair site were harvested. The cross-sectional area of the tendon was significantly increased at 2 and 4 weeks in polydeoxyribonucleotide group (p = 0.008 and p = 0.017, respectively). Moreover, tendons in the polydeoxyribonucleotide group were more resistant to mechanical stress at 2 and 4 weeks (p = 0.041 and p = 0.041, respectively). The staining levels of collagen type I in the experimental group were significantly stronger at 2 and 4 weeks (p = 0.026 and p = 0.009, respectively). Furthermore, higher expression levels of fibroblast growth factor, vascular endothelial growth factor, and transforming growth factor β1 were detected in the experimental group at 4 weeks (p = 0.041, p = 0.026, and p = 0.041, respectively). This study confirms that polydeoxyribonucleotide can improve the tensile strength of the rats' Achilles tendon following injury and repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1767-1776, 2018.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.