Abstract

The normal wound healing process is characterized by a complex, highly integrated cascade of events, requiring the interactions of many cell types, including inflammatory cells, fibroblasts, keratinocytes and endothelial cells, as well as the involvement of growth factors and enzymes. However, several diseases such as diabetes, thermal injury and ischemia could lead to an impaired wound healing process characterized by wound hypoxia, high levels of oxygen radicals, reduced angiogenesis, decreased collagen synthesis and organization. Polydeoxyribonucleotide (PDRN) has been used to improve wound healing through local and systemic administration thanks to its ability to promote cell migration and growth, angiogenesis, and to reduce inflammation on impaired wound healing models in vitro, in vivo and clinical studies. In light of all these observations, the aim of this review is to provide a full overview of PDRN applications on skin regeneration. We reviewed papers published in the last 25 years on PubMed, inserting “polydeoxyribonucleotide and wound healing” as the main search term. All data obtained proved the ability of PDRN in promoting physiological tissue repair through adenosine A2A receptor activation and salvage pathway suggesting that PDRN has proven encouraging results in terms of healing time, wound regeneration and absence of side effects.

Highlights

  • The skin, the outermost part of the body, provides a natural barrier against the environment and exerts a variety of essential protective functions

  • PDRN was compared to adenosine in primary cultures of human skin fibroblasts and it was seen that both compounds induced cell growth

  • PDRN is a prodrug capable of promoting wound healing impaired by diverse pathological conditions such as diabetes, burns and ischemia

Read more

Summary

Introduction

The skin, the outermost part of the body, provides a natural barrier against the environment and exerts a variety of essential protective functions. Upon disruption of skin integrity, either from active injuries or chronic insults, a multi-step process is initiated, leading to the reconstruction of wounded tissue and reestablishment of skin barrier functions. In physiological conditions it is established a normal wound healing process characterized by a complex and highly integrated cascade of events, requiring the interactions of many cell types, including inflammatory cells, fibroblasts, keratinocytes and endothelial cells, as well as the involvement of growth factors and enzymes. Several diseases such as diabetes, thermal injury and ischemia could lead to an impaired wound healing process characterized 4.0/).

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call