Abstract

Oxidative stress plays the main role in the pathogenesis of diabetes mellitus and peripheral neuropathy. Polydatin (PD) has been shown to exhibit strong antioxidative and antiinflammatory effects. At present, no research has focused on the possible effects of PD on Schwann cells and impaired peripheral nerves in diabetic models. Here, we used an in vitro Schwann cell damage model induced by methylglyoxal and an in vivo diabetic sciatic nerve crush model to study problems in such an area. In our experiment, we demonstrated that PD potently alleviated the decrease of cellular viability, prevented reactive oxygen species generation, and suppressed mitochondrial depolarization as well as cellular apoptosis in damaged Schwann cells. Moreover, we found that PD could upregulate Nrf2 and Glyoxalase 1 (GLO1) expression and inhibit Keap1 and receptor of AGEs (RAGE) expression of damaged Schwann cells. Finally, our in vivo experiment showed that PD could promote sciatic nerves repair of diabetic rats. Our results revealed that PD exhibited prominent neuroprotective effects on Schwann cells and sciatic nerves in diabetic models. The molecular mechanisms were associated with activating Nfr2 and GLO1 and inhibiting Keap1 and RAGE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.