Abstract

AimsSpinal cord injury (SCI) is one of the most devastating central lesions, resulting in serious locomotor deficit. Polydatin is a glucoside of resveratrol with proven anti-cardiovascular, anti-inflammatory and anti-oxidative properties. The main purpose of this study was to investigate whether polydatin could alleviate SCI in rats and explore the underlying mechanisms. Materials and methodsSCI rats induced by a weight-drop device were treated with intraperitoneal injection of 20 or 40 mg/kg polydatin. Then the locomotor function of SCI rats was evaluated by the Basso, Beattie and Bresnahan locomotor rating scale, spinal cord edema was measured by the wet/dry weight method, oxidative stress markers were detected by commercial kits and cell apoptosis status was measured by TUNEL staining. In addition, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) production and apoptosis status were detected in murine microglia BV2 cells treated with 100 ng/ml lipopolysaccharides (LPS) and 4.0 μM polydatin. The expression of apoptosis-related proteins involved in nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway was measured by western blot. Key findingsOur data showed that polydatin treatment improved locomotor performance of SCI rats, as well as reduced oxidative stress and inhibited apoptosis by enhancing Nrf2/HO-1 signaling. In addition, polydatin was found to up-regulate Nrf2 activity and the inhibitory effects of polydatin on oxidative stress and apoptosis in LPS-stimulated BV2 microglia was neutralized by silencing Nrf2 using specific siRNA. SignificanceWe demonstrate that polydatin may protect the spinal cord from SCI by suppression of oxidative stress and apoptosis via improving Nrf2/HO-1 signaling in microglia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.