Abstract

Interactions of ozone with organic precursors during water treatment may generate carcinogenic N-nitrosodimethylamine (NDMA) byproduct. This study investigates the reaction mechanisms responsible for NDMA formation from ozonation of the commonly used poly(diallyldimethylammonium chloride) (polyDADMAC) coagulant. Upon ozonation, polyDADMAC yields the highest amount of NDMA among several water treatment polymers, including polyamines and cationic polyacrylamides. Ozonation transforms polyDADMAC to dimethylamine (DMA) and NDMA formation is correlated to polyDADMAC degradation and DMA release. Hydroxyl radicals generated from ozone play an important role in the degradation of polyDADMAC's quaternary ammonium ring groups and subsequent release of secondary amine. Although nitrite and formaldehyde are detected as ozonation products of DMA and polyDADMAC, contribution of formaldehyde-enhanced nitrosation pathway is determined to be insignificant in NDMA formation. In contrast, reaction of hydroxylamine, another ozonation product of DMA, with DMA in the presence of ozone is deemed critical in the formation of NDMA during ozonation. The study results show that that contact of polyDADMAC with ozone will lead to release of the more potent NDMA precursor DMA but may not generate a significant amount of NDMA under typical drinking water treatment conditions due to low yield. The mechanistic understanding from this study can help develop source control strategies for minimization of NDMA formation risk at water and wastewater utilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call