Abstract

We examined erythropoietin (EPO) gene expression and EPO production during hypoxia in two Sprague-Dawley rat strains with divergent polycythemic responses to hypoxia. Hilltop (H) rats develop severe polycythemia, severe hypoxemia, and pulmonary artery hypertension. The H rats often die from a syndrome indistinguishable from chronic mountain sickness (CMS) in humans. Madison (M) rats develop polycythemia and pulmonary artery hypertension that is modest and suffer no excess mortality. We tested the hypothesis that these rat strains have different stimulus-response characteristics governing EPO production. Rats of each strain were exposed to hypoxia (0.5 atm, 73 Torr inspired PO2), and renal tissue EPO mRNA and EPO levels, plasma EPO, ventilation, arterial and renal venous blood gases, and indexes of renal function were measured at fixed times during a 30-day hypoxic exposure. During extended hypoxic exposure, H rats had significantly elevated renal EPO mRNA, renal EPO, and plasma EPO levels compared with M rats. Ventilatory responses and indexes of renal function were similar in the strains during the hypoxic exposure. H rats had greater arterial hypoxemia from the onset of hypoxia and more severe renal tissue hypoxemia and greater polycythemia after 14 days of hypoxic exposure. When EPO responses were expressed as functions of renal venous PO2, the two strains appeared to lie on the same dose-response curves, but the responses of H rats were shifted along the curve toward more hypoxic values. We conclude that H rats have significantly greater polycythemia secondary to poorer renal tissue oxygenation, but the stimulus-response characteristics governing EPO gene expression and EPO production do not seem to differ between M and H rats. Finally, the regulation of EPO levels during hypoxia occurs primarily at the transcriptional level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.