Abstract

Soil is an important environmental matrix to support the life of all organisms directly or indirectly. Despite being the ultimate sink for all pollutants, it has been neglected for long, which has negatively affected the quality of the soil. Disposal of pollutants has resulted in changes in properties of soils and introduction of toxicity into it. The presence of heavy metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs) affects all forms of life since these chemicals have associated toxicity, mutagenicity, and carcinogenicity. PAHs are typical pollutants of soil which result in alteration in grain size, porosity and water-holding capacity of soil and affect diversity/population of microbes adversely. Significant changes in permeability, volume, plasticity, etc., are also brought about resulting in poor quality of contaminated soils. Considering the toxicity and global prevalence of PAHs, remediation of contaminated soils has become a challenge. Therefore, it is important to understand the detailed mechanism of physical, chemical or biological changes in soil. Simultaneously, it becomes pertinent to identify the environmentally sustainable treatment options for remediation of contaminated sites. Whereas physical and chemical treatment methods are either cost, chemical, or energy prohibitive, the biological treatment is emerging as an efficient and effective option which employs microorganisms for mitigation. Microorganisms are known for their enzyme-catalyzed catabolic activity when degradation/mineralization of a pollutant is aimed at and can prove useful in degradation of PAHs. Therefore, the present study reviews the effects of PAHs on soil properties, different remediation techniques and the role of microorganisms in remediating contaminated sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.