Abstract

Polycyclic aromatic hydrocarbons (PAHs) are by-products arising from incomplete combustion. These organic chemicals substances are found almost everywhere and pose a risk to human health because of their potentially hazardous nature and bioavailability in the environment as determined by several regulatory agencies such as US Environmental Protection Agency (US-EPA), US Department of Health and Human Services (DHHS), International Agency for Research on Cancer (IARC) and the National Agency for Food and Drug Administration and Control (NAFDAC). The paper is aimed at studying polycyclic aromatic hydrocarbons in water. The possible sources, chemistry, risk and remediation strategies for polycyclic aromatic hydrocarbons in water have been considered. Studies have shown that exposure to PAHs at levels above the maximum contaminant level for relatively short periods will cause damage to the red blood cells leading to anaemia; suppressed immune system. Long-term exposure to Benzo(a)pyrene at levels above the maximum contaminant level has the potential to cause developmental and reproductive defects as well as cancer. US-EPA, IARC and DHHS has sets a maximum contaminant level (MCL) for benzo(a)pyrene, the most carcinogenic PAH, at 0.0002 mg/L, 0.0001 mg/L for benz(a)anthracene, 0.0002 mg/L for benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene. 0.0003 mg/L and 0.0004 mg/L have been set for dibenz(a,h)anthracene and indeno (1,2,3-c,d)pyrene respectively. Sustained barn on smoking in public places and burning of word, use of concretes in road construction as against the traditional surfacing of roads using coal tar as well as cars running on compressed natural gas (CNG) or liquefied petroleum gas (LPG) can form part of the preventive strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call