Abstract

Ship-breaking yards are recognized for releasing hazardous polycyclic aromatic hydrocarbons (PAHs), leading to severe environmental pollution in the sediment of ship-breaking areas. This study assessed the concentrations of 16 priority PAHs in surface sediments collected from the intertidal zone adjacent to the Sitakund ship-breaking yards. The samples underwent Soxhlet extraction and detection using PerkinElmer GC-Clarus 690 and MS-Clarus SQ8C with an Elite-5MS capillary column (30m × 0.25mm ID × 0.25µm). The study utilized PAH concentrations to reveal spatial distribution patterns, identify point sources, and assess potential toxicity. The total PAH concentration ranged from 1899.2 to 156,800.08ngg-1 dw, while the concentration of 7 carcinogenic PAHs ranged from 822.03 to 1899.15ngg-1 dw. High molecular weight PAHs dominated among the 16 PAHs, whereas low molecular weight PAHs, such as 2-ring PAHs, were negligible. Source characterization based on different molecular ratios suggested that PAHs in the area originated from pyrolytic processes related to ship dismantling, fishing activities, and water transportation for people. The observed PAH concentrations exceeded both national and international standards for sedimentary PAH levels, indicating significant ecological risks. The total TEQcarc values of sediment samples varied from 564.41 to 10,695.12ngg-1, with a mean value of 3091.25ngg-1. The study's findings underscore the immediate biological damage that PAH contamination in the Sitakund ship-breaking area could cause, emphasizing the need for effective control measures to ensure ecological and human safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.