Abstract

Concentrations and profiles of unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) were analyzed in airborne particulate matter (PM) samples collected from high-traffic roads in Hanoi urban area. Levels of PAHs and Me-PAHs ranged from 210 to 660 (average 420) ng/m3 in total PM, and these pollutants were mainly associated with fine particles (PM2.5) rather than coarser ones (PM > 10 and PM10). Proportions of high-molecular-weight compounds (i.e., 5- and 6-ring) increased with decreasing particle size. Benzo[b+k]fluoranthene, indeno[1,2,3-cd]pyrene, and benzo[ghi]perylene were the most predominant compounds in the PM2.5 samples. In all the samples, Me-PAHs were less abundant than unsubstituted PAHs. The PAH-CALUX assays were applied to evaluate aryl hydrocarbon receptor (AhR) ligand activities in crude extracts and different fractions from the PM samples. Benzo[a]pyrene equivalents (BaP-EQs) derived by the PAH-CALUX assays for low polar fractions (mainly PAHs and Me-PAHs) ranged from 300 to 840 ng/m3, which were more consistent with theoretical values derived by using PAH-CALUX relative potencies (270–710 ng/m3) rather than conventional toxic equivalency factor-based values (22–69 ng/m3). Concentrations of PAHs and Me-PAHs highly correlated with bioassay-derived BaP-EQs. AhR-mediated activities of more polar compounds and interaction effects between PAH-related compounds were observed. By using PAH-CALUX BaP-EQs, the ILCR values ranged from 1.0 × 10−4 to 2.8 × 10−4 for adults and from 6.4 × 10−5 to 1.8 × 10−4 for children. Underestimation of cancer risk can be eliminated by using effect-directed method (e.g., PAH-CALUX) rather than chemical-specific approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.