Abstract
As an essential carrier of hazardous substances, fugitive road dust has become a severe issue in China. In this study, 212 road dust samples from 53 cities in China were collected to comprehensively investigate the spatial variations, potential sources, and cancer risk of 16 polycyclic aromatic hydrocarbons (PAHs) and 16 nitro-PAHs. The total PAHs concentrations ranged from 0.07 to 345 μg/g dry weight, which is at a moderate level compared to other regions in the world. The mean concentration of Σ16nitro-PAHs was 111 ± 115 ng/g, which is 2–3 orders of magnitude lower than that of Σ16PAHs. A clear geographical trend of dust PAHs and nitro-PAHs was observed in the northeast, north, and east coastal regions of China at a higher level. Moreover, a significant correlation between latitude and PAHs/nitro-PAHs revealed the influences of outdoor temperature and coal combustion for heating in the different regions on the emission and reaction of PAHs and nitro-PAHs. The secondary formation of most nitro-PAHs increases with a decrease in latitude indicated that solar radiation and temperature are important factors on secondary formation of nitro-PAHs. The average concentration of total PAHs and their derivatives in trunk road samples were statistically higher than those in other road samples (p < 0.05), indicating the influence of traffic load on target compound concentration. Generally, the primary sources of PAHs in the road dust samples were coal combustion (23.9%), vehicles (57.1%), and wood/biomass combustion (19.0%). For nitro-PAHs, the main sources were secondary formation (30.9%), biomass/coal combustion (28.4%), and vehicles (44.9%). Furthermore, a moderate potential carcinogenic risk due to PAHs and nitro-PAHs in the dust samples was found in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.