Abstract

Non-road diesel engines are important polycyclic aromatic hydrocarbon (PAH) sources in the environment due to their high emission concentration compared to on-road diesel engines. Particle- and gas-phase PAH concentrations of a non-road diesel engine were investigated. Non-thermal plasma (NTP) as an effective after-treatment technology was used to reduce PAH emissions. The results showed that particle-phase PAH concentrations were 329.7 µg/m3, 3,206.7 µg/m3, and 1,185.7 µg/m3 without the action of NTP at three different engine loads respectively. Relatively low concentrations were measured for gas-phase PAHs. Excellent linearity was shown for particle-phase with total PAH concentrations both with, and without, NTP. The gas-phase PAH concentrations linearly increased with engine load without NTP. The five most abundant compounds of PAHs were among low molecular weight (LMW) and medium molecular weight (MMW) compounds. Total PAH cleaning efficiency was beyond 50% when treated with NTP at the three different engine loads. We hypothesized that naphthalene (Nap) concentrations increased greatly at 60% and 80% engine loads because it was produced within the plasma zone by decomposition of high molecular weight (HMW) PAHs. The PAHs content of particulate matter (PM) aggregation at 60% load was approximately three times higher than at 40% and 80% loads. High correlation values were observed for MMW PAHs with total PAH concentrations. Correlations of PAH concentration reduction could be important to clarify the PAH reduction mechanism with NTP technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call