Abstract
This study demonstrates polycrystalline silicon thin-film transistors (poly-Si TFTs) integrated with a high-κ nickel–titanium oxide (NiTiO3) gate dielectric using sol–gel spin-coating and nitrogen channel implantation. This novel fabrication method of the high-κ NiTiO3 gate dielectric offers thin equivalent-oxide thickness and high gate capacitance density, favorable for increasing the current driving capability. Introducing nitrogen ions into the poly-Si using implantation effectively passivates the trap states not only in the poly-Si channel but also at the gate dielectric/poly-Si interface. The poly-Si NiTiO3 TFTs with nitrogen implantation exhibit significantly improved electrical characteristics, including lower threshold voltage, a steeper subthreshold swing, higher field-effect mobility, a larger on/off current ratio, and less threshold-voltage roll-off. Furthermore, the nitrogen implantation improves the reliability of poly-Si NiTiO3 TFTs against hot-carrier stress and positive bias temperature instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.