Abstract

Large grain polycrystalline silicon films are produced by a two step process involving plasma deposition of microcrystalline silicon films on a substrate, separation from the substrate, and subsequent grain enhancement of the silicon films. The effects of doping and substrate temperature during deposition on the solar cell conversion efficiency are investigated. Effects of ppm level molybdenum contamination from the substrate, and silicon microstructure after grain enhancement, on solar cell efficiency parameters are also investigated. Solar cells with efficiencies of up to 10.1% under AM1 illumination, were fabricated on these silicon films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call