Abstract

In this paper, we demonstrate a broadband Mach-Zehnder interferometer optical switch based on polycrystalline silicon (poly-Si), which enables the development of multilayer photonics integrated circuits. The poly-Si is deposited under a low temperature of 620 °C to avoid unexpected thermal stress and influence on optoelectronic performance. By introducing a π/2 phase shifter and a push-pull configuration, the switch achieved low power consumption and loss caused by carrier plasma absorption (CPA). The switch operates effectively in both "Bar" and "Cross" states at voltages of -3.35 V and 3.85 V. The power consumptions are 7.98 mW and 9.39 mW, respectively. The on-chip loss is 5.9 ± 0.4 dB at 1550 nm, and the crosstalk is below -20 dB within the C-band. The switch exhibits a 10%-90% rise time of 7.7 µs and a 90%-10% fall time of 3.4 µs at 1550 nm. As far as we know, it is the first demonstration of a poly-Si switch on an 8-inch wafer pilot-line. The low-temperature deposited poly-Si switch is promising for multilayer active photonic devices and photonic-electronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.