Abstract
AbstractThe influence of different surface pretreatment procedures on the electrochemical response of a polycrystalline gold electrode was evaluated. Mechanical polishing with slurry alumina (M), chemical oxidation with H2SO4/H2O2 (C), electrochemical polishing (potential cycling between −0.1 V and 1.2 V vs. SCE) (E), chemical reduction with ethanol, and combinations among these treatments were employed to change the surface electrode characteristics. The efficiency of the proposed pretreatments was evaluated by electrochemical responses towards the redox couple ferri(II/III)‐ammonium sulfate and by the formation of a self‐assembly monolayer of 3‐mercaptopropionic acid (3 MPA SAM) on gold electrodes. The procedure (C) allowed important gold surfaces activation. Using procedures (C) and (E) the roughness of polycrystalline gold surfaces was significantly minimized and more reproducible surfaces could be obtained. From the profile of reductive desorption of 3 MPA SAM it was possible to verify that reduced gold surfaces generated better packed monolayers than oxidized ones and a comparative study using CV and DPV techniques showed that between the two desorption peaks, the one localized at more negative potential values corresponds to the cleavage of Au‐S bond from the chemisorbed thiol. In general, the improvement in the studied electrochemical responses could not only be attributed to an increase in the real surface area of the electrode, but to the chemical surface states set off by the pretreatment procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.