Abstract
We give a short, self-contained argument showing that, for compact connected sets in M 2×2 which are invariant under the left and right action of SO(2), polyconvexity is equivalent to rank-one convexity (and even to lamination convexity). As a corollary, the same holds for O(2)-invariant compact sets. These results were first proved by Cardaliaguet and Tahraoui. We also give an example showing that the assumption of connectedness is necessary in the SO(2) case. To cite this article: S. Conti et al., C. R. Acad. Sci. Paris, Ser. I 337 (2003).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.