Abstract

A lipophilic L-glutamide-derived lipid with a triethoxysilyl headgroup (Si-lipid) was newly synthesized as a self-assembling organogelator to stabilize the chirally ordered state of the aggregates. The Si-lipid formed nanofibrous network structures in various organic solvents such as benzene, cyclohexane, and dimethylformamide and entrapped them to form gels. The gels were transformed to sols by heat, and this gel-to-sol transition was thermally reversible. Polycondensation of the triethoxysilyl groups was carried out by acid-catalyzed hydrolysis and condensation in a benzene gel and confirmed by 29Si CP/MAS NMR and FT-IR measurements. After polycondensation, a gel state was maintained, and the thermal and mechanical stabilities of the aggregates increased markedly. Interestingly, polycondensation in chloroform and acetonitrile induced gelation, whereas no gelation was observed before polycondensation. Xerogel, which was prepared by freeze drying organogels, had fibrous network structures similar to those of the original gels. A strong CD signal was observed around the amide bonds in a cyclohexane gel at 20 degrees C, indicating that the gel contained chirally oriented structures based on intermolecular hydrogen bonds. An enhanced CD signal was observed even after polycondensation of the ethoxysilyl group of Si-lipid (poly(Si-lipid)) and was maintained at 70 degrees C, which is above the temperature of the gel-to-sol phase transition of the original gel. These results indicate that the formation of siloxane network structure among the fibrous aggregates stabilizes the chiral orientation of lipid aggregates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call