Abstract

Early in Drosophila embryogenesis, transcriptional repressors encoded by Gap genes prevent the expression of particular combinations of Hox genes in each segment. During subsequent development, those Hox genes that were initially repressed in each segment remain off in all the descendent cells, even though the Gap repressors are no longer present. This phenomenon of heritable silencing depends on proteins of the Polycomb Group (PcG) and on cis-acting Polycomb response elements (PREs) in the Hox gene loci. We have removed individual PcG proteins from proliferating cells and then resupplied these proteins after a few or several cell generations. We show that most PcG proteins are required throughout development: when these proteins are removed, Hox genes become derepressed. However, we find that resupply of at least some PcG proteins can cause re-repression of Hox genes, provided that it occurs within a few cell generations of the loss of repression. These results suggest a functional distinction between transcriptional repression and heritable silencing: in at least some contexts, Hox genes can retain the capacity to be heritably silenced, despite being transcribed and replicated. We propose that silenced Hox genes bear a heritable, molecular mark that targets them for transcriptional repression. Some PcG proteins may be required to define and propagate this mark; others may function to repress the transcription of Hox genes that bear the mark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.