Abstract

Polycomb (PcG) group proteins form modular complexes, which maintain repressed transcriptional states of target genes across cell divisions. As PcG complexes provide a memory of cell fate, such proteins might control temporal aspects of development. Loss-of-function of any of the FERTILIZATION INDEPENDENT SEED (FIS) PcG genes perturbs endosperm development. In this report we provide a detailed analysis of the phenotype of fis endosperm development using molecular and cellular markers. Wild type (WT) endosperm development undergoes a series of four major developmental phases timed by successive synchronous nuclei division. In fis endosperm the transition from phase 1, marked by a synchronous mode of nuclei divisions to phase 2, corresponding to the establishment of three mitotic domains, is absent. Accordingly, the expression of seven markers of phase 1 and phase 2 is temporally perturbed. In spite of such changes, specific sequences of developmental events still take place as in the WT. Overall, fis mutations are heterochronic mutations that cause a temporal deregulation in the ontogenic sequence of endosperm development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.