Abstract

Plasmodium falciparum malaria in humans is associated with an increase in the percentage and absolute number of gamma delta T cells in the peripheral blood. This increase begins during the acute infection phase and persists for at least 4 weeks during convalescence. In the present study, 25 to 30% of the gamma delta T cells expressed HLA-DR antigens in vivo and in some patients they proliferated in response to further stimulation by purified human interleukin 2 in vitro. However, there was no in vitro proliferative response to various malarial antigens, including a 75-kDa heat shock protein and a 72-kDa glucose-regulated protein of P. falciparum during the acute infection phase. Cytofluorographic studies showed that although an increase of V delta 1- gamma delta T cells was largely responsible for the expansion of the total number of gamma delta T cells, there was also a proportional increase in V delta 1+ cells. These results were confirmed with anchored PCR and by DNA sequencing to characterize at the molecular level the set of T-cell receptor (TCR) delta mRNAs expressed in the peripheral blood of two patients with high levels of gamma delta T cells. In each case, most of the TCR delta mRNA transcripts corresponded to nonproductively rearranged delta genes (unrearranged J delta or near J delta spliced to C delta). In those sequences which did represent productively rearranged genes, most of the transcripts originated from a V delta 2/J delta 1 joining, as in normal individuals. A minority of transcripts originated from a V delta 1/J delta 1 rearrangement, and one originated from a V alpha 4/J delta 1 rearrangement. Polyclonal activation of gamma delta T cells was inferred from the extensive junctional diversity seen in the delta mRNAs analyzed. Expansion of a heterogeneous set of both V delta 1(-)- and V delta 1(+)-bearing T cells suggests that the elevated levels of gamma delta T cells seen during acute P. falciparum malaria arose from immune responses to multiple distinct parasite antigens or unidentified host factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.