Abstract

In this paper, we investigate the generation of polychromatic quadripartite entanglement of continuous variables from a three-level $\ensuremath{\Lambda}$-type atomic system inside an optical quadruply resonant cavity. The atoms are driven by external lasers and simultaneously coupled to four cavity modes by means of multiply concurrent four-wave mixing interactions. The general master equation of the cavity field is derived explicitly. By solving the Gaussian-type master equation and using the negative-partial-transpose criterion for bipartite entanglement, we show that the genuine quadripartite entanglement of the field can be generated over a wide range of parameters. The entanglement properties of the four-mode field are discussed in detail. We find that the optimal quadripartite entanglement can be obtained when the cavity modes are tuned to be resonant with the Rabi sidebands of the driven atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.