Abstract

High-throughput microscale platforms have transformed modern analytical investigations. Traditional microarray analyses involve a comparative approach, with two samples, a known control and an unknown sample, hybridized side-by-side and then contrasted for genetic differences. The samples are labeled with separate dyes and hybridized together, providing a differential expression pattern based on the reporter intensities. In contrast, the fiber-optic microarray platform described herein is analyzed with a microscope, thereby enabling the use of virtually any reporter, including quantum dots. The instrumentation takes advantage of the narrow emission bands characteristic of quantum dots to perform multiplexed detection of Bacillus anthracis. Advancing beyond the standard red/green microarray experiment, a panel of eight reporters were linked to eight B. anthracis samples and simultaneously analyzed in a microarray format. The ability to employ an assortment of reporters, along with the capacity to simultaneously hybridize eight samples confers an unprecedented flexibility to array-based analyses, providing a 4-fold increase in throughput over standard two-color assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call