Abstract
Millions of pounds of polychlorinated biphenyl (PCB) compounds have been produced in multiple countries for industrial applications over the last several decades. PCB exposure induces various adverse health effects in animals and humans. Environmental and occupational exposures to PCBs have been associated with liver, kidney, endocrine, and neurodevelopmental adverse effects. We have collected and reviewed animal and human data cited in the US National Library of Medicine from 2000 to 2010. In brief, our review shows new evidence, that is, in animal studies, exposure to one of the PCBs, A1221, induces a significant alteration of serum luteinizing hormone. The effects were more profound in the F2 generation, particularly with respect to fluctuations in hormones and reproductive tract tissues across the estrous cycle. Morphological analyses of brain tissue from rats exposed to A1254 confirmed the results of an earlier work which showed that the relative size of the intra- and infrapyramidal (II-P) mossy fibers was smaller than that in the controls and also reduction in growth was selective for the II-P mossy fibers. PCB exposure increased anogenital distance and prostate size but decreased epididymal weight, epididymal sperm count, and motile epididymal sperm count. No effects were observed on testicular weight or size. The epidemiological data showed an association between diabetes mellitus prevalence and elevated concentrations of PCB 153. Additionally, prenatal PCB exposure studies were associated with a smaller thymic index at birth and could adversely affect immune responses to childhood vaccinations and resistance to respiratory infections. PCB exposure was also reported to adversely affect enamel development in children in a dose-dependent manner. Because PCBs and their metabolites are potential health hazards, understanding the risk factors associated with individual PCBs, PCB mixtures, and PCB metabolites is important. PCB exposures of vulnerable populations (pregnant women, fetuses, infants, and children) are of particular concern because of heightened sensitivity during this period of brain development.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.