Abstract

The rudimentary recycling of electronic waste (e-waste) has been banned in China since the late 2000s, leaving many abandoned e-waste sites. However, knowledge is limited on the concentrations and fates of the e-waste derived contaminants such as polychlorinated biphenyls (PCBs) in these abandoned sites. In this work, we assessed the temporal trend of PCB concentrations in the year 2010, 2012, and 2016 at an abandoned e-waste site in South China, using apple snail as a bioindicator. The mean ∑PCBs concentrations in apple snails sampled in 2016 (53.2 ng/g dry weight) was approximately 11-fold higher than that (4.68 ng/g dry weight) in apple snails from a reference site. The result suggested that the abandoned e-waste recycling site was still heavily polluted by PCBs, despite of the fact that crude e-waste recycling processes have been prohibited for nearly 10 years. The concentrations of ∑PCBs were significantly decreased in 2016 compared to those in 2010 (mean: 115 ng/g dry weight) and 2012 (mean: 92.3 ng/g dry weight), but there were no significant differences in the concentrations between 2010 and 2012. Regarding the congener profiles, the contributions of lower chlorinated congeners (tri- and tetra-PCBs) in the snails tended to be higher over the years. The ∑PCBs in snails were significantly correlated with those in soils. Additionally, PCB profiles in snails resembled those in soils. These results suggested that apple snails can be used as an ideal bioindicator for PCBs in the paddy soils. Field determined biota-soil accumulation factors (BSAFs) for PCBs ranged from 0.31 to 1.9, with most of the values being 1–2; indicating that theoretical BSAFs can be used to predict the bioaccumulation of PCBs in the snails with a reasonable degree of certainty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call