Abstract

Developing an accurate and precise approach for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) is significant for food safety surveillance. Herein, a photoelectrochemical sensing platform was constructed based on polycarboxylic ionic liquid functionalized metal-organic framework integrated with gold nanoparticles (Yb-MOFs@AuNPs). Sulfhydryl functionalized hairpin DNA (hDNA) was immobilized on a Yb-MOFs@AuNPs modified glassy carbon electrode (GCE) surface through Au-S bond. After blocking residual active binding sites with BSA, gold nanoparticles-labeled AFB1 aptamer (AuNPs-Apt 1) and gold nanorods-labeled OTA aptamer (AuNRs-Apt 2) were introduced to construct a photoelectrochemical aptasensor for the simultaneous determination of AFB1 and OTA. Due to the surface plasmon resonance effect and the nanometer size effect of gold nanomaterials, the photoelectrochemical aptasensor can output photocurrent responses as being excited with different wavelengths at 520 nm and 808 nm, respectively. When the AFB1 and OTA concentration in the range of 0.001–50.0 ng mL−1, a good linear relationship between the photocurrent difference (ΔI) before and after recognizing targets and the logarithm of AFB1 or OTA concentration was obtained. The detection limits for AFB1 and OTA were 0.40 pg mL−1 and 0.19 pg mL−1, respectively. AFB1 and OTA in corn samples were detected simultaneously by the photoelectrochemical aptasensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.