Abstract
Previous studies have shown that esterase activity can degrade a variety of polyurethanes (PUs), including polycarbonate-based PUs (PCNUs). When cultured on PCNUs, differing in their chemistries, monocyte-derived macrophages (MDM) synthesized and secreted different amounts of both cholesterol esterase (CE) and monocyte-specific esterase (MSE). MDM were seeded on PCNUs synthesized with hexane diisocyanate (HDI) or 4,4′-methylene-bis-phenyl diisocyanate (MDI), PCN and [14C]butanediol (BD) in the ratio 3:2:1 (referred to as HDI321 or MDI321). The effect of phenylmethylsulfonyl fluoride (PMSF, a serine esterase and proteinase inhibitor), sodium fluoride (NaF, a MSE inhibitor) and sodium taurocholate (NaT, a CE stimulator) was assessed on degradation (measured by radiolabel release (RR)) and esterase activity in MDM lysate. The results were compared to the effect that these reagents had on commercially available CE and carboxyl esterase (CXE), which has a specificity similar to MSE. NaF inhibited CXE- and MDM-mediated RR to the same extent as for both PCNUs. However, the MDM-mediated RR from MDI321 was 1.8-times higher than HDI321 in the presence of NaT (P = 0.005). This study suggests that the difference in diisocyanate chemistry may dictate the relative contribution of each esterase to a specific material's degradation. This may be related to both the substrate specificity of each esterase, as well as by the relative amount of each esterase that the specific biomaterial substrates induce the cells to synthesize and secrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.