Abstract

Using stem cells is one of the most important determining factors in repairing lesions using regenerative medicine. Obtaining adult stem cells from patients is a perfect choice, but it is worth noting that their differentiation and proliferation potential decreases as the patient ages. For this reason, the use of amniotic fluid stem cells can be one of the excellent alternatives. This research aimed to investigate the osteogenic differentiation potential of the amniotic fluid stem cells while cultured on the polycaprolactone/poly L-lactic acid nanofibrous scaffold. Scaffolds were qualitatively evaluated by a scanning electron microscope, and their hydrophilicity and mechanical properties were studied using contact angle and tensile test, respectively. The biocompatibility and non-toxicity of the nanofibers were also evaluated using viability assay. The osteo-supportive capacity of the nanofibers was examined using alizarin red staining, alkaline phosphatase activity, and calcium release measurement. Finally, the expression level of four important bone-related genes was determined quantitatively. The results demonstrated that the mineralization rate, alkaline phosphatase activity, intracellular calcium, and bone-related genes increased significantly in the cells cultured on the polycaprolactone/poly L-lactic acid scaffold compared to the cells cultured on the tissue culture plate as a control. According to the results, it can be concluded that the polycaprolactone/poly L-lactic acid nanofibrous scaffold surprisingly improved the osteogenic differentiation potential of the amniotic fluid stem cells and, in combination with polycaprolactone/poly L-lactic acid nanofibers could be a promising candidate as bone implants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.