Abstract

Hybridization of synthetic poly (e-caprolactone) (PCL) and natural chitosan polymers to develop PCL/chitosan core-shell nanostructures for cell cultivation was aimed in this study. Coaxial electrospinning method was used for the fabrication of the nanostructures. The characterizations of the samples were done by X-ray photoelectron spectroscopy (XPS) analyses and mechanical tests. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies, MTT assay and Confocal Laser Scanning Microscopy (CLSM), carried out with L929 ATCC CCL-1 mouse fibroblast cell line, proved the biocompatibility of all materials. The cell viability on the hybrid nanostructures was ~two times better then on tissue culture polystyrene (TCPS) because of its three dimensional (3D) extracellular matrix (ECM)-like structure compared to 2D flat surface of commercially cell compatible TCPS. The performance was ~two times and ~ten times better compared to single PCL and single chitosan, respectively, even though both fabricated similarly by electrospinning as non-woven fibrous structures, because were either too hydrophobic or too hydrophilic to maintain cell attachment points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call