Abstract

There is a deficit for bone tissue natural grafts that seek to be covered with synthetic substitutes. Scaffolds generated with 3D printing and electrospinning allow adequate mechanical properties maintaining a structure appropriate for cell growth. Here, a scaffold made up of three-dimensional (3D) printed PLA frameworks added with PCL/PLA/nHA nanofibers was manufactured. The framework showed mechanical properties similar to other reported bone substitutes, while the nanofibers showed diameters between 200 and 850 nm. Scaffolds were suitable for cell adhesion and proliferation when evaluated with fibroblasts, showing cell proliferation into the nanofiber network, a fundamental aspect in tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.