Abstract

Mechanically robust biocomposite scaffolds were fabricated by the electrospinning method for bone tissue engineering using a blend of polycaprolactone (PCL), and graphene oxide (GO) with magnesium oxide (MgO) nanoparticles. Physicochemical characteristics including morphology, tensile strength, swelling behavior, biodegradability, contact angle, cell viability, alkaline phosphatase (ALP) activity, mineralization ability, and osteogenic gene expression of the scaffolds were characterized. The addition of small amounts of GO and MgO nanoparticles significantly improved the morphological and mechanical properties of the PCL scaffold. The hydrophilicity, swelling ratio, and biodegradability of the developed composite scaffolds were improved. The PCL/GO/MgO scaffold demonstrated excellent biocompatibility and in-vitro biological performance with adipose-derived mesenchymal stem cells. Cell attachment, proliferation, ALP activity, mineral deposition, and osteogenesis-related gene expression were enhanced when compared to the pure PCL and PCL/GO scaffolds. Simultaneous incorporation of GO and MgO nanoparticles at a concentration of 2 wt% dramatically increased the differentiation of MSCs into osteoblasts. These findings may suggest that the hydrophilic properties and high protein adsorption of PCL/GO/MgO scaffold can stimulate cell proliferation, and nucleation to help improve bone mineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call