Abstract

Anastomotic leakage due to post-surgical suture line disruption is one of the crucial factors affecting patient’s survival and quality of life. To resolve the poor healing of surgical anastomosis and protect suture sites leakage, fibrous membrane sealing patch was developed using a synthetic polymer (polycaprolactone (PCL)) and biopolymer (gelatin). Electrospinning was used to develop fibrous architecture of membranes fabricated in different ratios (15% (w/v) PCL: 15% (w/v) gelatin mixing ratio of 1:1, 1:2, 1:3 and 1:4). Experimental findings suggested that, higher gelatin content in the membranes reduced the fiber diameter and contact angle, leading to a more hydrophilic scaffold facilitating attachment to the defect site. The degradation rate of various PCL-gelatin membranes (P1G1, P1G2, P1G3 and P1G4) was proportional to the gelatin content. Cytocompatibility was assessed using L929 cells while the P1G4 (PCL: gelatin 1:4 ratio) scaffold exhibited optimum outcome. From in vivo study, the wound site healed significantly without any leakage when the sutured area of rat caecum was covered with P1G4 membrane whereas rats in the control group (suture only) showed leakage after two weeks of surgery. In summary, the P1G4 membrane has potential to be applied as a post-surgical leakage-preventing tissue repair biomaterial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.