Abstract

Herein, we investigated the effect of electrospun polycaprolactone fumarate (PCLF) nanofibers on neural stem cell (NSC) behavior in the in vitro setting. Murine NSCs were isolated from adult mice subventricular zone and immunophenotyped by flow cytometry assay and immunofluorescence staining. Cells were cultured on the plastic surface, laminin-coated surface, and electrospun PCLF nanofibers. Cell morphology, attachment, and spreading were evaluated by scanning electron microscopy analysis. Cell viability and proliferation rates were evaluated by MTT assay. The proliferation of plated cells was investigated by monitoring Ki-67-positive cells using flow cytometry analysis. The protein levels of Map-2 and GFAP were detected by using immunofluorescence staining to show neural and astrocyte differentiation capacity. Scanning electron microscopy images revealed an extensive distribution, morphological adaptation, and cell-to-cell connectivity in NSCs upon culture on the PCLF surface. MTT analysis showed that the NSCs had more survival rates on the PCLF surface compared to the laminin and control groups over time (p < 0.05). In contrast to the laminin group, Ki-67 analysis showed a decrease of proliferating cells in the PCLF group. Immunofluorescence staining revealed the prominent increase of Map-2 and GFAP reduction in NSCs from the PCLF group compared to the laminin and control groups, showing the stimulatory effect of PCLF on targeted maturation of NSCs (p < 0.05). In brief, PCLF based construct promotes NSCs morphological adaptation and neuronal differentiation, suggesting PCLF as an appropriate and applicable substrate in neural tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.