Abstract

Electrospun nanofibers have been applied as a new technology for gas indicators in food intelligent packaging. A poly(ε-caprolactone) (PCL)/red cabbage anthocyanin (RCA)-based nanofiber volatile amines gas indicator was developed by applying a bi-solvent of acetic acid (AA) and formic acid (FA) in electrospinning. The visibility of color change was improved from pink to blue, compared to blue to yellow-green, when using a single solvent of AA. The solutes of PCL (12.5, 15, 17.5, and 20%) and RCA (10, 20, 30, and 40%) and the solvents of AA/FA (9:1, 7:3, 5:5, 3:7, and 1:9) were applied in electrospinning under the condition of 12.5 cm, 1.0 mL/h, and 20 kV. The optimal microstructure with the thinnest fiber diameter and constant arrangement without forming NF beads appeared under the 7:3 FA/AA, 15% PCL, and 20% RCA condition. The indicator changed from pink to blue with the values of total color change (ΔE) of 10, 14, and 18 when exposed to the saturated gas of ammonia solutions of 8, 80, and 800 mM, respectively. The indicator was stable and unchanged in color for 28 days when exposed to light at room temperature. In the application to mackerel packaging, the built-in indicator changed from pink to purple regardless of storage temperature when the spoilage point was reached.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.