Abstract

In this study, N-doped mesoporous carbon ropes (N-MCRs), derived from polybenzoxazine, a new high-performance thermosetting resin, used as an electrode active material for supercapacitor application. Nitrogen-containing tetraethylenepentamine and eugenol were used to synthesize polybenzoxazine. The structure of the monomer was supported by Fourier transform infrared (FT-IR) and 1H NMR spectroscopy. The morphology and surface properties of the synthesized N-MCRs were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), N2 adsorption-desorption study and X-ray photoelectron spectroscopy (XPS). It was found that the reactant ratio of nitrogen-rich polybenzoxazine plays an important role in the improvement of electrochemical behavior. The BET surface area of N-MCRs was found to be 300 m2 g−1. Electrochemical performance proposes a high nitrogen content of 12.38 mol % with optimum nitrogen-containing benzoxazine derived carbon backgrounds. It showed a specific capacitance of the 60 F g−1 in 2 M KOH aqueous electrolyte at a current density of 1 A g−1. A remarkable improvement in the electrochemical behavior was obtained by modifying the surface chemistry as well as the electrical conductivity of the carbon. The presence of porous carbon with intrinsic nitrogen-containing groups makes them more useful as high-performance supercapacitor. Overall, this simple approach exhibits great potential for carbon-based high-performance supercapacitor application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.