Abstract

When a perturbed periodic oscillation dephases, the system edits it to retrieve the original clock. The inherent clock born during retrieval is the time crystal. Time crystals have been explored for five decades, and only one inherent clock was detected in biological and artificial systems. Only one type of atom is used in those time crystals, but two or more atom types would lead to multi-functional and programmable time crystals. No such concept was ever conceived. Here, we demonstrate a multi-clock time crystal or a polyatomic time crystal in the brain neuron-extracted microtubule nanowire using dielectric resonance and quantum optics experiments. Earlier, one used to artificially reset the phase of an inherent clock to find a time crystal. Instead, we map how a biomaterial spontaneously generates distinct new clocks at many time domains at a time. We observe multiple time-symmetry-breaking events at a time. Moreover, unlike conventional time crystal research, we searched for polyatomic time crystals at least 103 orders lower than the excitation frequency region. Conventional time crystals could be rejected, arguing that inherent clocks born after the breaking of time symmetry are harmonics of the external input, and such an argument will not hold for us. Moreover, quantum experiments revealed a method to synthesize and fuse distinct clocks in one hologram as a polyatomic time crystal and project it like an antenna meters away. The discovery of material-like holographic engineering of polyatomic time crystals would make them useful.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call