Abstract

ABSTRACTNovel macroporous, hydrophilic microspheres with a surface layer of crosslinked poly(aspartic acid) were synthesized. In this study, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)] microspheres with pore size around 370 nm were first obtained through the surfactant reverse micelle swelling method, and the poly(GMA‐co‐EGDMA) was aminated by ethylene diamine to form poly(GMA‐NH2). The polysuccinimide was grafted onto the surface of poly(GMA‐NH2) microspheres and crosslinked by hexamethylendiamine and γ‐aminopropyltriethoxysilane, respectively, and then hydrolyzed to obtain the poly(aspartic acid)‐functionalized macroporous microspheres. The functionalized hydrophilic microspheres were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), thermogravimetric analysis, mercury porosimetry, and elemental analysis. The metal ion adsorption capacity was also studied. The FTIR, XPS, and elemental analysis confirmed the poly(aspartic acid) functionalization of the poly(GMA‐co‐EGDMA) microspheres. SEM and mercury porosimetry showed there was little effect of this surface chemical modification on microsphere porosity, and the obtained macroporous microspheres exhibited excellent thermal stability and adsorption for Ag(I), presenting great potential for applications in adsorption, fixation, and separation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47441.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call