Abstract

By exploiting the chemical versatility and the high water dispersibility of α,β-poly(N-2-hydroxyethyl)D,L-aspartamide, in this work, two different polymer derivatives were synthesized for the first time. Obtained macromolecules were characterized and used to produce hydrogels exploitable for the local release of hydrophobic anticancer drugs. The first derivative, bearing pendant β-cyclodextrins, was employed to solubilize tamoxifen, chosen as a model drug, and to produce a water soluble supramolecular complex, as evidenced through tamoxifen phase solubility studies. The second derivative, bearing pendant Cyclo(Arginine-Glyicine-Asparagine-D-Phenilyalanine-Cysteine) peptide moieties, was used as a macromolecular crosslinker to obtain a hydrogel with cellular recruitment properties. The occurrence of crosslinking between the two derivatives was studied through rheological analysis and different procedures were employed to obtain tamoxifen medicated hydrogels. In vitro release studies, together with cytotoxicity and recruitment experiments, reveal that the obtained hydrogels can control the release of anticancer drugs, have a cytotoxic effect on human breast carcinoma cells and, thanks to the presence of adhesion moieties, are able to recruit cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.