Abstract

Protein transduction domains (PTDs) have been used increasingly to deliver reagents to a variety of cell types in vitro and in vivo. We have previously shown that HIV TAT-PTD-containing whole protein antigens (Ags)-transduced dendritic cells (DCs) stimulated Ag-specific CD8+ and CD4+ T cells. Although the cytotoxic T lymphocytes (CTL) activity generated was sufficient to prevent engraftment of mice with Ag-expressing tumors, treatment of tumor-bearing mice with TAT-PTD Ag-transduced DCs resulted in tumor regression in some animals. Recently, several other PTDs were reported to promote higher transduction efficiencies than TAT-PTD. To evaluate the role of individual PTDs in induction of immune responses in tumor vaccination studies, we engineered recombinant fusion Ovalbumin (OVA) that contained three differrent PTDs, including the most efficacious known PTD (polyarginine (R9)-PTD). Our results demonstrated that R9-PTD-containing OVA transduced DCs most efficiently, and that transduction efficacy was closely correlated with the extent of Ag-specific CD4+ and CD8+ T-cell activation in vitro and in vivo. Repeated vaccination with R9-PTD-OVA-transduced DC in (OVA-expressing) tumor-bearing mice induced enhanced antitumor immunity, and elicited complete rejection of tumors when DC was co-injected with adjuvants. This vaccination strategy may be clinically applicable, and offers theoretical and practical advantages to those that are in current use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.