Abstract

Polyanions are postulated intermediates in biomineralization because they sequester large numbers of calcium ions and occur in high concentrations at mineralizing foci in distantly related organisms. In this study mineral ion and polyanion metabolism was examined inPleurochrysis carterae to determine whether polyanions function as intermediate calcium-carriers during coccolith (mineralized scale) formation. In this organism mineralization occurs intracellularly in coccolith-forming saccules, and mature coccoliths are extruded through the plasma membrane into the coccosphere. The polyanions (acidic polysaccharides known as PS-1 and PS-2) are synthesized in medial Golgi cisternae and transported to the coccolith-forming saccule prior to the onset of mineral deposition; they also cover the mineral surface of mature coccoliths. Pulse-chase experiments with45Ca2+ and14CO3− show the calcium uptake into the coccolith-forming saccule is much slower than carbonate uptake. The extended intracellular half-life of calcium ions destined for the coccosphere suggests that calcium is initially sequestered in more distal Golgi elements (perhaps in association with the polyanions) and enters the coccolith-forming saccule only after passage through the endomembrane system. This is consistent with previous cytochemical studies showing that the polyanions are complexed with calcium prior to mineral deposition. It has been suggested that polyanions may be degraded at the mineralization front in order to free calcium ions for precipitation with available carbonate or phosphate ions. However, this study demonstrates that the polyanions are not degraded; essentially all PS-1 and PS-2 are eventually secreted with the mineral phase into the coccosphere. The kinetics of mineral ion and polyanion secretion are consistent with a polyanion-mediated calcium transport; however, the manner in which calcium might be sequestered by and freed from the polyanions is still obscure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.