Abstract
AbstractReceptors for carboxylate anions have many possible biomedical applications, including mimicry of the vancomycin group of antibiotics. However, binding carboxylates in water, the biological solvent, is highly challenging due to the hydrophilicity of these polar anions. Here we report, for the first time, the recognition of simple carboxylates such as acetate and formate in water by synthetic receptors with charge‐neutral binding sites. The receptors are solubilised by polyanionic side‐chains which, remarkably, do not preclude anion binding. The tricyclic structures feature two identical binding sites linked by polyaromatic bridges, capable of folding into closed, twisted conformations. This folding is hypothesised to preorganise the structures for anion recognition, mimicking the process which generates many protein binding sites. The architecture is suitable for elaboration into enclosed structures with potential for selective recognition of biologically relevant carboxylates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.