Abstract

In this present study, magnetic nanoparticles (MNPs) nanocomposites modified with polyaniline (PANI) coated newly synthesised dicationic ionic liquid (DICAT) forming MNP-PANI-DICAT were successfully synthesised as new generation material for magnetic solid phase extraction (MSPE). MNP-PANI-DICAT was characterised by FT-IR NMR, CHN, BET, SEM, TEM, and VSM techniques and the results were compared with MNP-PANI and native MNP. This new material was applied as a magnetic adsorbent for the pre-concentration and separation of polycyclic aromatic hydrocarbons (PAHs) due to the π–π interaction between polyaniline shell and dicationic ionic liquid (DICAT) with PAHs compounds. Under the optimal conditions, the proposed method was evaluated and applied for the analysis of PAHs in environmental samples using gas chromatography-mass spectrometry (GC-MS). The validation method showed good linearity (0.005–500µgL−1) with the coefficient of determination (R2) > 0.999. The limits of detection (LOD) and quantification (LOQ) of the developed method (MNP-PANI-DICAT-MSPE) were in the range of 0.0008–0.2086µgL−1 and 0.0024–0.6320µgL−1, respectively. The enrichment factor (EF) of PAHs on MNP-PANI-DICAT-MSPE were in the range of 7.546–29.632. The extraction recoveries of natural water, sludge, and soil samples were ranged from 80.2% to 111.9% with relative standard deviation (RSD) less than 5.6%. The newly synthesised MNP-PANI-DICAT possess good sensitivity, reusability, and fast extraction of PAHs under the MSPE procedure in various environmental samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.