Abstract

Aqueous Zn-ion batteries, high safety and low costs, suffer from an inferior energy density due to a low operating voltage of aqueous electrolytes. Here we report an ultrahigh-energy cathode of polyaniline (PANI) nanopillars grown on surface cracked carbon fibers. The PANI cathode has an ultrahigh specific capacity of 412.7 mA h/g at 0.5 A/g, and a superior cyclic stability with 93.2% capacity retention over 1500 cycles at 4 A/g. The energy density, 464.1 Wh/kg @ 0.56 kW/kg, is close to that of popular lithium-ion batteries with organic electrolytes, whereas the power density, 16.6 kW/kg @ 223.5 Wh/kg, is comparable to that of supercapacitors with aqueous electrolytes. Both doping/dedoping and oxidation/reduction mechanisms are involved for ultrahigh energy storage of the PANI cathode. In addition, the Zn-ion battery can tolerate severe mechanical bending with superior capacity retention, which is promising to power wearable electronics and flexible displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call