Abstract

Ti3C2 MXene (TM) has great application potential in the field of wave absorption and corrosion resistance due to its unique performance, such as high specific surface area, high electrical conductivity, excellent mechanical and good chemical stability. However, it is difficult to obtain uniformly dispersed TM in the resin matrix due to rapid agglomeration behavior. It is difficult to obtain uniformly dispersed Ti3C2 MXene (TM) in the resin matrix due to rapid agglomeration behavior. Herein, a novel method is presented to improve the corrosion protection and dispersion of TM by polymerizing polyaniline (PANI) nanoparticles between layers. The waterborne epoxy (WEP) coating with PANI-TM had high mechanical properties including impact resistance, adhesion, and flexibility and wear resistance. The PANI-TM-WEP composites can effectively absorb more than 90 % of the electromagnetic waves and demonstrate a decreased glass transition temperature of WEP from 128.0 to 107.6 ℃. Moreover, the |Z|0.01Hz value of the PANI-TM0.5 % was 1.2369 × 106 Ω·cm2, which was one order of magnitude larger than WEP coating. The high-performance anticorrosion of PANI intercalated TM coating is attributed to the synergistic effect of impermeable TM nanosheets and passivation effect of PANI. Therefore, PANI-TM is a potential choice for applications in the fields of anticorrosion and microwave absorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.