Abstract

Polyaniline (PANI) nanofibers were synthesized in compressed liquid carbon dioxide without any template or surfactant. The polymerization of aniline took place at the interface between CO 2 and aqueous solution in a high-pressure stirred reactor. The prepared PANI nanofibers were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), electrical conductivity (EC), Fourier-transform infrared (FT-IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analyses. The yield of polymerization was high enough to reach 63.04% while maintaining small diameters of the PANI nanofibers. This result is very important for the preparation of the PANI nanofibers because no other previous investigations have achieved both high yield and small diameter of fibers at the same time. Through SEM and TEM analyses, we observed that the PANI nanofibers had diameter range of 30–70 nm and a length range of 0.3–1 μm, which caused them to disperse well in various solvents such as water, ethanol, 2-propanol, m-cresol and toluene. The electrical conductivity of the PANI nanofibers was 4.34 S/cm at 20 °C. The XRD diffraction pattern showed that the PANI nanofibers had crystalline one-dimensional structures, which gave high thermal stabilities as confirmed by TGA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call