Abstract

We present an efficient, highly selective and binder free non-enzymatic glucose sensor based on polyaniline@copper-nickel (PANI@CuNi) nanocomposite. PANI@CuNi nanocomposites with different loading ratio of nanoparticles (1: 025, 1: 0.33, 1: 05 and 1: 1) were prepared by mixing solution of PANI, synthesized through inverse emulsion polymerization method, and CuNi nanoparticles, synthesized through polyol process. The as prepared PANI@CuNi nanocomposites were coated on glassy carbon substrate without binder for non-enzymatic glucose sensing. A considerable increase in the active surface area of the electrode occurred after coating of this material. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronoamperometry demonstrated that PANI@CuNi nanocomposite with 1: 0.5 ratio could be a good choice to be used as electrode material for non-enzymatic glucose sensing. The PANI@CuNi modified electrode exhibited high sensitivity (1030 μA mM−1 cm−2), good lower detection limit (0.2 μM) and a linear range of 5.6 mM (R2 = 0.992) with additional advantage of excellent selectivity, high stability and effective detection in real blood samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.