Abstract

Monitoring bovine serum albumin (BSA) at ultra-low levels is crucial for clinical and food safety applications, as it plays a significant role in identifying various health conditions and potential risks, necessitating fast, trace-level detection of BSA. This study proposes an approach to address these challenges by employing molecularly imprinted polymer (MIP) to develop an ultra-trace-level and cost-effective BSA sensing platform. The MIP electrochemical sensor was developed using polyaniline (PANI) combined with the protein crosslinker glutaraldehyde (GA) to optimize BSA surface imprinting in the MIP. As a result, the sensor achieves a sensitivity of 1.24 μA/log(pg/mL), with a picomolar detectable limit of 2.3 pg/mL (0.035 pM) and a wide detection range from 20 pg/mL to 200,000 pg/mL (0.303 pM to 3030 pM), making it suitable for clinical and food safety applications. Additionally, the study explores the interaction between an acidic surfactant protein eluent (acetic acid with sodium dodecyl sulfate, AcOH-SDS) and BSA vacant sites, enhancing recognition and re-binding. The PANI-based MIP sensor demonstrates initial feasibility and practicality in commercial milk and real human serum, opening avenues for early disease detection and ensuring food safety in BSA-related immune responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call