Abstract

Aniline and pyrrole have been oxidized with ammonium peroxydisulfate in aqueous solutions, in the presence of equimolar quantities of hydrochloric acid. The oxidation of pyrrole was faster; the induction period typical of aniline oxidation was absent in the case of pyrrole. As the proportion of oxidant-to-monomer molar concentration increased up to 1.5, the yield increased in both cases. Similarities between the two oxidations are illustrated and discussed. The oxidant-to-monomer molar ratio 1.25 is proposed to be the optimum stoichiometry, in the accordance with the data published in the literature. The conductivities of the polymers prepared were only slightly dependent on the oxidant-to-monomer ratio in the range 0.3–1.5, and were of the order of 10 0 S cm −1 for polyaniline and ∼10 −2–10 −1 S cm −1 for polypyrrole. Outside this interval, the conductivity of both polymers was reduced. Polyaniline having conductivity ∼10 S cm −1 was produced in solutions of phosphoric acid of various concentrations. On the contrary, the conductivity of polypyrrole was reduced as the concentration of phosphoric acid became higher. The type of protonation is discussed with the help of FTIR spectra by analyzing the ammonium salts obtained after deprotonation. Sulfate or hydrogen sulfate anions produced from peroxydisulfate always constitute a part of the counter-ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.