Abstract

BackgroundIn the Mediterranean fruit fly (medfly), Ceratitis capitata, a highly invasive agricultural pest species, polyandry, associated with sperm precedence, is a recurrent behaviour in the wild. The absence of tools for the unambiguous discrimination between competing sperm from different males in the complex female reproductive tract has strongly limited the understanding of mechanisms controlling sperm dynamics and use.ResultsHere we use transgenic medfly lines expressing green or red fluorescent proteins in the spermatozoa, which can be easily observed and unambiguously differentiated within the female fertilization chamber. In twice-mated females, one day after the second mating, sperm from the first male appeared to be homogenously distributed all over the distal portion of each alveolus within the fertilization chamber, whereas sperm from the second male were clearly concentrated in the central portion of each alveolus. This distinct stratified sperm distribution was not maintained over time, as green and red sperm appeared homogeneously mixed seven days after the second mating. This dynamic sperm storage pattern is mirrored by the paternal contribution in the progeny of twice-mated females.ConclusionsPolyandrous medfly females, unlike Drosophila, conserve sperm from two different mates to fertilize their eggs. From an evolutionary point of view, the storage of sperm in a stratified pattern by medfly females may initially favour the fresher ejaculate from the second male. However, as the second male's sperm gradually becomes depleted, the sperm from the first male becomes increasingly available for fertilization. The accumulation of sperm from different males will increase the overall genetic variability of the offspring and will ultimately affect the effective population size. From an applicative point of view, the dynamics of sperm storage and their temporal use by a polyandrous female may have an impact on the Sterile Insect Technique (SIT). Indeed, even if the female's last mate is sterile, an increasing proportion of sperm from a previous mating with a fertile male may contribute to sire viable progeny.

Highlights

  • In the Mediterranean fruit fly, Ceratitis capitata, a highly invasive agricultural pest species, polyandry, associated with sperm precedence, is a recurrent behaviour in the wild

  • Sperm of the first male are under-represented in the initial progeny of twice-mated females, independently of the transgenic male order The overall number of progeny produced by the 52 females mated first to the tGFP1 and to the DsRedEx1 males (n = 7530), was significantly greater than those produced by the 50 females in the reciprocal mating cross (n = 4882)(Wilcoxon rank sum test with continuity correction P = 3.06e-6)

  • We confirm that the sperm load from a single mating does not exploit the storage capacity of the female sperm storage organs, mirroring the strategic partitioning of the male’s sperm reserves among different females to optimize his reproductive success [28,29,30,31]

Read more

Summary

Introduction

In the Mediterranean fruit fly (medfly), Ceratitis capitata, a highly invasive agricultural pest species, polyandry, associated with sperm precedence, is a recurrent behaviour in the wild. The absence of tools for the unambiguous discrimination between competing sperm from different males in the complex female reproductive tract has strongly limited the understanding of mechanisms controlling sperm dynamics and use. A number of studies have investigated the dynamics of sperm storage in the medfly in terms of relative amount of sperm stored in each organ and priority in fertilization. From a functional point of view, ablation experiments have established that the two spermathecae are long-term storage organs, whereas the fertilization chamber acts as staging point for sperm prior to their use in fertilization and is periodically replenished with sperm from the spermathecae [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call