Abstract

The diversity of mammalian mating systems is primarily shaped by sex-specific reproductive strategies. In the present study, we explored determinants and consequences of a unique mating system exhibited by fossas (Cryptoprocta ferox), the largest Malagasy carnivore, where females mate polyandrously on traditional mating trees, and males exhibit intrasexual size dimorphism. Males face both contest and scramble competition, and inter-sexual size dimorphism can be pronounced, but its magnitude depends on the male morph. Using a continuous behavioral observation of six estrous females over 4 years, we investigated correlates of male contest competition and female choice based on 316 copulations. Furthermore, we assessed correlates of male scramble competition based on testes size and movement data obtained from GPS tracking. We found that females dominated males regardless of their smaller size and that females actively solicited copulations. Heavy males had highest mating success during the female’s peak mating activity, but were discriminated against afterwards. Female choice and male–male competition thus converged to generate a mating advantage for heavier males. Our results suggest that females actively seek polyandrous matings, presumably for indirect genetic benefits. Since body mass is the major determinant of male mating success and is at the same time dependent on the degree of sociality and associated hunting mode of the respective male morph, a male’s feeding ecology is likely to influence its reproductive tactic. A combination of benefits from female polyandry and the consequences of different subsistence strategies may thus ultimately explain this unusual mating system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call